If you're seeing this message, it means we're having trouble loading external resources on our website.

Jeżeli jesteś za filtrem sieci web, prosimy, upewnij się, że domeny *.kastatic.org i *.kasandbox.org są odblokowane.

Główna zawartość

Wyznaczanie równania prostej stycznej do wykresu funkcji wychodząc z formalnej definicji pochodnej

Pokażemy Ci trzy przykłady ilustrujące wyznaczanie równania prostej stycznej do wykresu funkcji w danym punkcie. Tłumaczenie na język polski: Fundacja Edukacja dla Przyszłości.
Nachylenie prostej stycznej do wykresu w danym punkcie x, equals, c możemy obliczyć korzystając z definicji pochodnej funkcji f w x, equals, c (o ile istnieje granica):
limit, start subscript, h, \to, 0, end subscript, start fraction, f, left parenthesis, c, plus, h, right parenthesis, minus, f, left parenthesis, c, right parenthesis, divided by, h, end fraction
Znając nachylenie, możemy wyznaczyć równanie prostej. W tym artykule omówimy trzy przykłady takich obliczeń.

Przykład 1: równanie prostej stycznej do wykresu funkcji f, left parenthesis, x, right parenthesis, equals, x, squared w x, equals, 3

Krok 1
Wskaż wzór na pochodną funkcji f, left parenthesis, x, right parenthesis, equals, x, squared w x, equals, 3
Wybierz 1 odpowiedź:

Krok 2
Oblicz wartość granicy, równej pochodnej funkcji.
f, prime, left parenthesis, 3, right parenthesis, equals
  • Prawidłowa odpowiedź to:
  • liczba całkowita, taka jak 6
  • właściwy uproszczony ułamek, taki jak 3, slash, 5
  • niewłaściwy uproszczony ułamek, taki jak 7, slash, 4
  • liczba mieszana, taka jak 1, space, 3, slash, 4
  • dokładny ułamek dziesiętny, taki jak 0, comma, 75
  • wielokrotność pi, taka jak 12, space, start text, p, i, end text lub 2, slash, 3, space, start text, p, i, end text

f, prime, left parenthesis, 3, right parenthesis równa się nachyleniu prostej stycznej do wykresu. Aby, znając nachylenie, wyznaczyć równanie prostej, potrzebujemy współrzędnych jednego punktu, leżącego na tej prostej.
Najprościej jest wybrać punkt, który należy do prostej i do wykresu funkcji f.
Krok 3
Którego punktu powinniśmy użyć, aby wyznaczyć równanie tej prostej
left parenthesis
  • Prawidłowa odpowiedź to:
  • liczba całkowita, taka jak 6
  • właściwy uproszczony ułamek, taki jak 3, slash, 5
  • niewłaściwy uproszczony ułamek, taki jak 7, slash, 4
  • liczba mieszana, taka jak 1, space, 3, slash, 4
  • dokładny ułamek dziesiętny, taki jak 0, comma, 75
  • wielokrotność pi, taka jak 12, space, start text, p, i, end text lub 2, slash, 3, space, start text, p, i, end text
comma
  • Prawidłowa odpowiedź to:
  • liczba całkowita, taka jak 6
  • właściwy uproszczony ułamek, taki jak 3, slash, 5
  • niewłaściwy uproszczony ułamek, taki jak 7, slash, 4
  • liczba mieszana, taka jak 1, space, 3, slash, 4
  • dokładny ułamek dziesiętny, taki jak 0, comma, 75
  • wielokrotność pi, taka jak 12, space, start text, p, i, end text lub 2, slash, 3, space, start text, p, i, end text
right parenthesis

Krok 4
uzupełnij równanie prostej stycznej do wykresu funkcji f, left parenthesis, x, right parenthesis, equals, x, squared w punkcie x, equals, 3.
y, equals

Gotowe! Wychodząc z definicji pochodnej, wyznaczyliśmy równanie prostej stycznej do wykresu funkcji f, left parenthesis, x, right parenthesis, equals, x, squared w x, equals, 3.

Przykład 2: równanie prostej stycznej do wykresu funkcji f, left parenthesis, x, right parenthesis, equals, x, cubed w x, equals, minus, 1

Krok 1
  • Prąd elektryczny
g, prime, left parenthesis, minus, 1, right parenthesis, equals, question mark
Wybierz 1 odpowiedź:

Przykład 3: równanie prostej stycznej do wykresu funkcji f, left parenthesis, x, right parenthesis, equals, x, squared, plus, 3 w x, equals, minus, 5

Spróbujmy od razu odpowiedzieć na to pytanie.
Jak wygląda równanie tej prostej?

Chcesz dołączyć do dyskusji?

Na razie brak głosów w dyskusji
Rozumiesz angielski? Kliknij tutaj, aby zobaczyć więcej dyskusji na angielskiej wersji strony Khan Academy.