Aktualny czas:0:00Całkowity czas trwania:5:20

Praktyczny przykład zastosowania zasad ustanawiających kolejność działań

Transkrypcja filmu video

Skoro znamy już prawidłową kolejność wykonywania działań, zmierzmy się z trudniejszym wyrażeniem. Mamy tu mnóstwo nawiasów i liczb, ale zawsze w takich przypadkach wystarczy po prostu wziąć głęboki wdech i podejść do tego na spokojnie. Najpierw nawiasy, czyli "P". Zapiszę pierwsze litery angielskich nazw. Potem potęgi. W naszym wyrażeniu nie ma potęg. Potem mnożenie i dzielenie, i na końcu dodawanie i odejmowanie. Z liter powstaje łatwe do zapamiętania słowo „pemdas”, ale przyda się tylko osobom anglojęzycznym. Możecie wymyślić własne. Zastosujmy tę regułę w naszym wyrażeniu i obliczmy prawidłowy wynik. Najpierw liczymy działania w nawiasach, a tu jest ich sporo. Oto jedna para nawiasów, wewnątrz której znajduje się druga para nawiasów. Reguła mówi nam: najpierw oblicz nawiasy. Ale żeby obliczyć treść w różowych nawiasach, trzeba najpierw obliczyć tę w żółtych. Policzmy więc, ile będzie równe to wszystko. Jeśli uznamy to za osobne wyrażenie, widać, że najpierw musimy zająć się nawiasem czyli działaniem 5 - 2. Łatwo to policzyć. Pięć minus dwa to trzy. Zróbmy to krok po kroku. Gdy nabierzecie wprawy, będziecie liczyć wszystko naraz. To będzie równe 7 + 3 razy 5 - 2, czyli 3. Wszystko w różowym nawiasie. I oczywiście trzeba też dopisać resztę działań. Ups, nie o to mi chodziło. Chcę skopiować i wkleić ten fragment. Kopiuj… i wciąż nie to, co trzeba! Łatwiej będzie przepisać to ręcznie. Mam trudności techniczne. Podzielić przez 4, razy 2. A po tej stronie 7 * 2 plus treść w różowym nawiasie. Co dalej? Spójrzcie, nawiasy zawsze na początku. Więc kontynuujemy, aż nie zostanie żaden nawias. Musimy obliczyć wynik wyrażenia w różowym nawiasie. Co mamy w tym nawiasie? 7 + 3 * 3 Jak obliczyć to wyrażenie? Wróćmy do naszej reguły. Jesteśmy wewnątrz nawiasu, gdzie nie ma już żadnych nawiasów. Nie ma także potęg, ale jest mnożenie, które trzeba wykonać przed dodawaniem i odejmowaniem. Mnożymy więc 3 * 3, zanim dodamy to 7. Czyli to będzie równe 7 plus… i wynik działania 3 * 3, bo mnożenie ma wyższy priorytet. 7 + 9 To nam zostanie w nawiasie. Na początku 7 * 2 plus nawias, a na końcu podzielić przez 4 * 2. Teraz znów liczymy nawias, bo nawiasy mają pierwszeństwo. Ile to jest 7 + 9? 7 + 9 to 16. Zapiszmy całe wyrażenie. 7 * 2 + 16 : 4 * 2 Nie ma już nawiasów, więc literkę "P" mamy z głowy. "E" także, bo w wyrażeniu nie występują potęgi. Kolej na mnożenie i dzielenie. Mnożenie mamy… tutaj… tu mamy dzielenie… a tu jeszcze jedno mnożenie. Musimy wykonać te działania, zanim zajmiemy się tym plusem. Najpierw to mnożenie. 7 * 2 to 14. To dodawanie na razie zostawiamy… i dalej mamy 16 : 4 * 2. Te działania mają priorytet przed dodawaniem. Jak to policzyć? Czy zacząć od dzielenia czy od mnożenia? W poprzednim odcinku mówiłem, że gdy mamy kilka działań o tym samym priorytecie, należy wykonywać je w kolejności od lewej do prawej. Tak jest bezpieczniej. 16 : 4 równa się 4, więc to wyrażenie upraszcza się do wyrażenia… 4 * 2 To jest to wszystko w zielonej ramce. Pozostało wykonać ostatnie mnożenie, bo mnożenie wciąż ma priorytet przed dodawaniem. Wynik mnożenia to 8,… zatem mamy 14 + 8. Ile to jest 14 + 8? To się równa 22. I to jest nasz wynik.