If you're seeing this message, it means we're having trouble loading external resources on our website.

Jeżeli jesteś za filtrem sieci web, prosimy, upewnij się, że domeny *.kastatic.org i *.kasandbox.org są odblokowane.

Główna zawartość

Czym jest ciśnienie?

Ciśnienie jest podobne do siły, ale nie całkiem. Tłumaczenie na język polski: fundacja Edukacja dla Przyszłości.

Co oznacza ciśnienie?

Jeśli spróbował(a)byś przybić młotkiem kręgiel do ściany, prawdopodobnie nie wydarzyłoby się nic, poza tym, że nikt już nigdy nie pożyczyłby Ci swoich kręgli. Jednak, jeśli uderzysz młotkiem z tą samą siłą w gwóźdź, to dużo łatwiej wejdzie on ścianę. To pokazuje, że czasem znajomość wartości siły nie wystarczy - musisz wiedzieć jeszcze, jak ta siła jest rozłożona na powierzchni uderzenia. W przypadku gwoździa, cała siła między ścianą a gwoździem byłaby skoncentrowana na bardzo małej powierzchni na ostrym końcu gwoździa. Za to w przypadku kręgla, powierzchnia styku ze ścianą byłaby dużo większa, co za tym idzie siła byłaby dużo mniej skoncentrowana.
Osoba uderzająca kręgiel i gwóźdź młotkiem.
Aby bardziej doprecyzować tę koncepcję, stosujemy pojęcie ciśnienia. Ciśnienie jest zdefiniowane jako wartość siły działającej prostopadle do powierzchni do tej powierzchni.
P, equals, start fraction, F, divided by, A, end fraction
Tak więc, aby wytworzyć dużą wartość ciśnienia możesz albo zadziałać dużą siłą, albo rozłożyć siłę na małej powierzchni (lub zrobić oba). Innymi słowy, możesz być bezpieczny leżąc na łóżku z gwoździ, jeśli łączna powierzchnia końcówek gwoździ jest wystarczająco duża.
Definicja ta oznacza również, że jednostką ciśnienia są niutony na metr kwadratowy start fraction, start text, N, end text, divided by, start text, m, end text, squared, end fraction, które nazywane są również paskalami lub w skrócie start text, P, a, end text.

Jak znaleźć ciśnienie w cieczy?

Powierzchnia ciała stałego może wywierać ciśnienie, lecz płyny (tj. ciecze lub gazy) również mogą wywierać ciśnienie. Może się to wydawać dziwne, gdy o tym pomyślisz, bo trudno sobie wyobrazić wbijanie gwoździa w ciecz. Aby nadać temu sens, wyobraź sobie bycie zanurzanym na jakąś głębokość w wodzie. Woda ponad Tobą naciskałaby w dół z powodu siły grawitacji, tym samym wywierałaby na Ciebie ciśnienie. Jeśli zejdziesz niżej, nad Tobą będzie więcej wody, więc ciężar i ciśnienie powodowane przez wodę również wzrosną.
Nie tylko ciężar cieczy może wywierać ciśnienie - ciężar gazów również może. Na przykład ciężar powietrza w naszej atmosferze jest znaczny i prawie zawsze znajdujemy się na jego dnie. Ciśnienie wywierane na Twoje ciało przez ciężar atmosfery jest zaskakująco ogromne. Nie odczuwasz go, ponieważ ciśnienie atmosferyczne zawsze tutaj jest. Zauważamy tylko zmiany ciśnienia poniżej lub powyżej normalnego ciśnienia atmosferycznego (jak wtedy, gdy lecimy samolotem lub nurkujemy pod wodą w basenie). Ogromne ciśnienie atmosferyczne nie robi nam krzywdy, ponieważ nasze ciało jest w stanie przekazać siłę na zewnątrz, aby zrównoważyć ciśnienie wywierane na organizm przez atmosferę. Natomiast oznacza to, że gdybyś został wyrzucony w próżnię przestrzeni kosmicznej przez kosmicznych piratów, ciśnienie Twojego ciała kontynuowałoby naciskanie na zewnątrz z dużą siłą, ponieważ nic nie wywierałoby nacisku z zewnątrz.
Okej, tak więc ciężar płynu może wywierać ciśnienie na ciała w nim zanurzone, ale jak możemy dokładnie określić jakie ciśnienie wywrze płyn? Wyobraź sobie puszkę fasolki, która zostaje upuszczona do basenu, jak na poniższym obrazku.
Puszka fasolki zanurzona w wodzie na głębokość h.
Ciężar słupa wody nad puszką fasolki tworzy ciśnienie na górze puszki. Aby znaleźć wyrażenie niezbędne do obliczenia ciśnienia, zaczniemy od jego definicji.
P, equals, start fraction, F, divided by, A, end fraction
Za siłę F powinniśmy podstawić ciężar słupa wody nad puszką fasolki. Ciężar zawsze obliczamy ze wzoru W, equals, m, g, zatem ciężar słupa wody może być zapisany jako W, equals, m, start subscript, w, end subscript, g, gdzie m, start subscript, w, end subscript to masa słupa wody nad puszką fasolki. Podstawimy to do powyższego wzoru na ciśnienie i otrzymamy:
P, equals, start fraction, m, start subscript, w, end subscript, g, divided by, A, end fraction
W tej chwili może nie być oczywiste, co robić, ale możemy uprościć to równanie, zapisując m, start subscript, w, end subscript w postaci gęstości i objętości wody. Skoro gęstość jest równa ilorazowi masy przez objętość rho, equals, start fraction, m, divided by, V, end fraction, możemy przekształcić to dla uzyskania wzoru na masę słupa wody i zapisać m, start subscript, w, end subscript, equals, rho, start subscript, w, end subscript, V, start subscript, w, end subscript, gdzie rho, start subscript, w, end subscript to gęstość wody, a V, start subscript, w, end subscript to objętość słupa wody nad puszką (nie objętość całego basenu). Po podstawieniu m, start subscript, w, end subscript, equals, rho, start subscript, w, end subscript, V, start subscript, w, end subscript za masę słupa wody do poprzedniego równania, otrzymujemy:
P, equals, start fraction, rho, start subscript, w, end subscript, V, start subscript, w, end subscript, g, divided by, A, end fraction
Na pierwszy rzut oka wydaje się, że to tylko skomplikowało wzór, ale stanie się coś magicznego. Mamy objętość w liczniku i powierzchnię w mianowniku, więc spróbujemy coś skrócić, aby uprościć sprawę. Wiemy, że objętość walca to V, start subscript, w, end subscript, equals, A, h, gdzie A to powierzchnia podstawy walca, a h to wysokość walca. Możemy podstawić V, start subscript, w, end subscript, equals, A, h za objętość słupa wody w poprzednim równaniu i skrócić powierzchnie, aby otrzymać:
P, equals, start fraction, rho, start subscript, w, end subscript, left parenthesis, A, h, right parenthesis, g, divided by, A, end fraction, equals, rho, start subscript, w, end subscript, h, g
Nie tylko skróciliśmy powierzchnie, lecz także otrzymaliśmy wzór, w którym ciśnienie zależy tylko od gęstości wody rho, start subscript, w, end subscript, głębokości pod powierzchnią wody h i przyspieszenia ziemskiego g. To bardzo fajne, bo od teraz ciśnienie nie zależy już od powierzchni, objętości, ani masy puszki fasolki. W zasadzie, w tym wzorze ciśnienie nie zależy od niczego związanego z puszką fasolki, poza głębokością jej zanurzenia pod powierzchnią płynu. Zatem wzór ten będzie działał tak samo dla jakiegokolwiek ciała w jakimkolwiek płynie. Możesz też użyć go do określenia ciśnienia na konkretnej głębokości w cieczy, bez rozważania żadnego zanurzonego w nim ciała. Często spotkasz ten wzór z h oraz g zamieniającymi się miejscami w ten sposób:
P, equals, rho, g, h
Uporządkujmy kilka rzeczy: pisząc rho, mamy zawsze na myśli gęstość płynu powodującego ciśnienie, a nie gęstość ciała zanurzonego w płynie. h to głębokość zanurzenia w płynie, więc nawet, jeżeli będzie to "pod" powierzchnią płynu, wstawimy liczbę dodatnią. Zaś g to wartość przyspieszenia ziemskiego, które wynosi plus, 9, comma, 8, start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction .
Teraz możesz pomyśleć "OK, więc ciężar wody i ciśnienie na górze puszki fasolki będzie pchało puszkę w dół, tak?". Racja, ale to tylko połowa prawdy. Okazuje się, że siła z ciśnienia wody nie tylko pcha w dół od góry puszki, gdyż ciśnienie właściwie powoduje siłę, która napiera na puszkę z każdej strony. Sumaryczny efekt ciśnienia wody to nie pchanie puszki w dół. Ciśnienie wody w zasadzie próbuje zmiażdżyć puszkę z każdej strony, jak na poniższym obrazku.
Puszka fasolki jest ściskana przez ciśnienie wody.
Jeśli to pomoże, możesz pomyśleć o tym w ten sposób. Gdy puszka wpadła do wody, trochę niegrzecznie przemieściła dużą ilość cząsteczek wody z miejsca, gdzie się teraz znajduje. To spowodowało podniesienie się poziomu całej wody. Lecz woda jest pchana w dół przez grawitację, która sprawia, że próbuje ona znaleźć najniższy możliwy poziom. Zatem woda próbuje wepchnąć się siłą w miejsce dawnej objętości, z której została przemieszczona, starając się obniżyć wysokość, na której znajduje się lustro wody. Tak więc niezależnie od tego, czy puszka fasolki (lub jakiekolwiek inne ciało) znajduje się w wodzie czy nie, cząsteczki wody są zawsze wzajemnie ściskane przez siłę grawitacji, gdy próbują obniżyć poziom wody do najniższego możliwego punktu. Ciśnienie P we wzorze rho, g, h jest skalarem, który mówi Ci o ilości tej ściskającej siły na jednostkę powierzchni w płynie.
W tym momencie, jeśli bardzo uważałaś/eś, możesz zastanawiać się "Hej, przecież nad wodą jest jeszcze powietrze, tak? Czy ciężar słupa powietrza nad słupem wody nie powinien wliczać się do całkowitego ciśnienia na górze puszki fasolki?" I miał(a)byś rację. Słup powietrza nad słupem wody również naciska w dół i jego ciężar jest zaskakująco wielki.
Jeśli potrzebujesz wzoru na łączne ciśnienie (nazywane również ciśnieniem absolutnym lub bezwzględnym) na górze puszki, musisz dodać ciśnienie atmosferyczne panujące na Ziemi P, start subscript, a, t, m, end subscript do ciśnienia z cieczy rho, g, h.
P, start subscript, a, b, s, o, l, u, t, n, e, end subscript, equals, rho, g, h, plus, P, start subscript, a, t, m, end subscript
Z reguły nie próbujemy wyprowadzać dziwacznych wzorów jak rho, start subscript, p, o, w, i, e, t, r, z, a, end subscript, g, h na ciśnienie atmosferyczne P, start subscript, a, t, m, end subscript, gdyż nasza głębokość w atmosferze ziemskiej jest mniej więcej stała dla każdego pomiaru przeprowadzonego blisko ziemi.
To oznacza, że ciśnienie atmosferyczne na powierzchni Ziemi pozostaje mniej więcej stałe. Wartość ciśnienia atmosferycznego na powierzchni Ziemi utrzymuje się w okolicach 1, comma, 01, dot, 10, start superscript, 5, end superscript, P, a. Występują małe odchylenia od tej liczby spowodowane różnicami warunków pogodowych, wilgotności, wysokości, itp., ale w większości przypadków, gdy przeprowadzamy obliczenia fizyczne, przyjmujemy, że ta wartość jest stałą i nie zmienia się. Innymi słowy, dopóki płyn, dla którego obliczasz ciśnienie znajduje się blisko powierzchni Ziemi i ma styczność z atmosferą (nie znajduje się w jakiejś komorze próżniowej), możesz obliczyć łączne ciśnienie (nazywane również absolutnym lub bezwzględnym) za pomocą tego wzoru.
P, start subscript, a, b, s, end subscript, equals, rho, g, h, plus, 1, comma, 01, dot, 10, start superscript, 5, end superscript, P, a

Jaka jest różnica między ciśnieniem absolutnym a nadciśnieniem?

Gdy mierzą ciśnienie, ludzie często nie chcą znać łącznego ciśnienia (do którego wlicza się ciśnienie atmosferyczne). Zazwyczaj chcą oni znać różnicę między jakimś ciśnieniem a ciśnieniem atmosferycznym. Spowodowane jest to tym, że ciśnienie atmosferyczne prawie się nie zmienia i prawie zawsze jest obecne. Co za tym idzie umieszczanie go w swoich obliczeniach może wydawać się czasem troszkę pozbawione sensu. Innymi słowy, wiedza, że powietrze w nienapompowanej oponie jest ciśnieniem absolutnym wynoszącym 1, comma, 01, dot, 10, start superscript, 5, end superscript, P, a nie jest zbyt użyteczna (ponieważ panowanie ciśnienia atmosferycznego w oponie oznacza, że jest ona płaska). Dopiero dodatkowe ciśnienie w oponie, powyżej ciśnienia atmosferycznego, pozwoli oponie się uwypuklić i działać prawidłowo.
Z tego powodu większość manometrów i sprzętu pomiarowego posługuje się czymś, co określa się jako nadciśnienie P, start subscript, n, end subscript . Nadciśnienie to ciśnienie mierzone względem ciśnienia atmosferycznego. Nadciśnienie jest dodatnie dla ciśnień większych od atmosferycznego, wynosi zero przy ciśnieniu atmosferycznym i jest ujemne dla ciśnień mniejszych od atmosferycznego.
Łączne ciśnienie jest często określane jako ciśnienie absolutne P, start subscript, a, b, s, end subscript. Ciśnienie absolutne to pomiar ciśnienia względem całkowitej próżni. Tak więc ciśnienie absolutne jest dodatnie dla każdego ciśnienia większego od kompletnej próżni, wynosi zero dla próżni, a także nigdy nie jest ujemne.
Powyższe może zostać zsumowane w relacji między ciśnieniem absolutnym P, start subscript, a, b, s, end subscript, nadciśnieniem P, start subscript, n, end subscript oraz ciśnieniem atmosferycznym P, start subscript, a, t, m, end subscript, która wygląda następująco:
P, start subscript, a, b, s, end subscript, equals, P, start subscript, n, end subscript, plus, P, start subscript, a, t, m, end subscript
Jeśli szukamy ciśnienia na głębokości h w nieruchomej cieczy wystawionej na działanie powietrza, w pobliżu powierzchni ziemi, nadciśnienie oraz ciśnienie absolutne można obliczyć tak:
P, start subscript, n, end subscript, equals, rho, g, h
P, start subscript, a, b, s, end subscript, equals, rho, g, h, plus, 1, comma, 01, dot, 10, start superscript, 5, end superscript, start text, space, P, a, end text
Ponieważ różnicą między ciśnieniem absolutnym i nadciśnieniem jest tylko dodana stała wartość ciśnienia atmosferycznego, procentowa różnica między ciśnieniem absolutnym a nadciśnieniem staje się tym mniej i mniej istotna, im większą wartość osiąga ciśnienie. (spójrz na poniższy obrazek))
Obrazek pokazujący różne wartości ciśnienia absolutnego i nadciśnienia.

Co mylącego może być w pojęciu ciśnienia?

Ludzie czasem chcą podstawić gęstość zanurzonego ciała rho, start subscript, c, i, a, ł, a, end subscript do wzoru na nadciśnienie w płynie P, equals, rho, g, h, lecz gęstość w tym wzorze odwołuje się do gęstości płynu rho, start subscript, p, ł, y, n, u, end subscript, który wywiera ciśnienie.
Ludzie czasem mylą ciśnienie absolutne z nadciśnieniem. Pamiętaj, że ciśnienie absolutne to nadciśnienie plus ciśnienie atmosferyczne.
Niestety mamy także co najmniej 5 różnych powszechnie używanych jednostek pomiaru ciśnienia (paskale, atmosfery, milimetry słupa rtęci, itp.). W fizyce standardową jednostką układu SI jest paskal (Pa), ale ciśnienie jest także często mierzone w "atmosferach", w skrócie start text, a, end text, t, m. Zamiana między paskalami i atmosferami wygląda, jak można się było spodziewać, w następujący sposób 1, start text, a, t, m, end text, equals, 1, comma, 01, dot, 10, start superscript, 5, end superscript, start text, space, P, a, end text, gdyż jedna atmosfera jest definiowana jako ciśnienie atmosfery Ziemi.

Jak wyglądają rozwiązane przykłady z udziałem ciśnienia?

Przykład 1: Obliczanie ciśnienia wywieranego przez nogę krzesła

Ważąca 7, comma, 20, start text, space, k, g, end text fuksja stoi nieruchomo na kolorowym czworonożnym krześle stojącym na podłodze. Każda noga krzesła ma okrągłą podstawę o promieniu 1, comma, 30, space, start text, c, m, end text. Krzesło jest tak świetnie zaprojektowane, że jego ciężar rozkłada się po równo na wszystkie cztery nogi.
Oblicz ciśnienie między podstawą nogi krzesła a podłogą w paskalach.
P, equals, start fraction, F, divided by, A, end fraction, start text, left parenthesis, U, z, with, \., on top, y, j, space, d, e, f, i, n, i, c, j, i, space, c, i, s, with, \', on top, n, i, e, n, i, a, point, space, N, a, d, c, i, s, with, \', on top, n, i, e, n, i, e, space, n, i, e, space, j, e, s, t, space, t, u, t, a, j, space, s, t, o, s, o, w, n, e, comma, space, g, d, y, z, with, \., on top, space, n, i, e, space, m, a, space, t, u, space, z, with, \., on top, a, d, n, e, g, o, space, p, ł, y, n, u, point, right parenthesis, end text
P, equals, start fraction, m, g, divided by, A, end fraction, start text, left parenthesis, P, o, d, s, t, a, w, space, d, o, space, w, z, o, r, u, space, c, i, ę, z, with, \., on top, a, r, space, k, r, z, e, s, ł, a, space, end text, W, equals, m, g, start text, space, z, a, space, s, i, ł, ę, space, F, right parenthesis, end text
P, equals, start fraction, m, g, divided by, 4, dot, pi, r, squared, end fraction, start text, left parenthesis, W, s, t, a, w, space, d, o, space, w, z, o, r, u, space, ł, ą, c, z, n, ą, space, p, o, w, i, e, r, z, c, h, n, i, ę, space, p, o, d, s, t, a, w, space, n, o, with, \', on top, g, space, k, r, z, e, s, e, ł, space, 4, dot, pi, r, squared, space, z, a, space, p, o, w, i, e, r, z, c, h, n, i, ę, space, A, point, right parenthesis, end text
P, equals, start fraction, left parenthesis, 7, comma, 20, start text, space, k, g, end text, right parenthesis, left parenthesis, 9, comma, 8, start fraction, start text, m, end text, divided by, start text, s, end text, squared, end fraction, right parenthesis, divided by, 4, dot, pi, left parenthesis, 0, comma, 013, start text, space, m, end text, right parenthesis, squared, end fraction, start text, left parenthesis, P, o, d, s, t, a, w, space, o, d, p, o, w, i, e, d, n, i, e, space, l, i, c, z, b, y, comma, space, u, p, e, w, n, i, a, j, ą, c, space, s, i, ę, comma, space, z, with, \., on top, e, space, z, a, m, i, e, n, i, ł, a, s, with, \', on top, slash, e, s, with, \', on top, space, c, m, space, n, a, space, m, right parenthesis, end text
P, equals, start fraction, 70, comma, 56, start text, space, N, end text, divided by, 0, comma, 002124, start text, space, m, end text, squared, end fraction, equals, 33, space, 200, start text, space, P, a, end text, start text, left parenthesis, O, b, l, i, c, z, space, i, space, c, i, e, s, z, space, s, i, ę, !, right parenthesis, end text

Przykład 2: Siła działająca na bulaj łodzi podwodnej

Ciekawski konik morski spogląda przez okrągłe okienko łodzi podwodnej, która znajduje się na głębokości 63, comma, 0, start text, space, m, end text pod powierzchnią Morza Śródziemnego. Gęstość wody morskiej to 1025, start fraction, start text, k, g, end text, divided by, m, cubed, end fraction. Okno jest okrągłe i ma promień 5, comma, 60, start text, space, c, m, end text. Konik morski jest zachwycony tym, że szyba nie pęka od ciśnienia spowodowanego przez ciężar wody morskiej.
Jaki jest kierunek działania siły wywieranej na powierzchnię okrągłego okienka łodzi podwodnej przez ciężar wody?
P, equals, start fraction, F, divided by, A, end fraction, start text, left parenthesis, U, z, with, \., on top, y, j, space, d, e, f, i, n, i, c, j, i, space, c, i, s, with, \', on top, n, i, e, n, i, a, comma, space, a, b, y, space, z, n, a, l, e, z, with, \', on top, c, with, \', on top, space, z, a, l, e, z, with, \., on top, n, o, s, with, \', on top, c, with, \', on top, space, m, i, ę, d, z, y, space, c, i, s, with, \', on top, n, i, e, n, i, e, m, space, i, space, s, i, ł, ą, right parenthesis, end text
F, equals, P, A, start text, left parenthesis, P, r, z, e, k, s, z, t, a, ł, c, with, \', on top, space, w, z, o, with, \', on top, r, space, n, a, space, l, i, t, e, r, k, a, c, h, comma, space, a, b, y, space, o, t, r, z, y, m, a, c, with, \', on top, space, s, i, ł, ę, right parenthesis, end text
F, equals, left parenthesis, rho, g, h, right parenthesis, A, start text, left parenthesis, W, s, t, a, w, space, w, z, o, with, \', on top, r, space, n, a, space, n, a, d, c, i, s, with, \', on top, n, i, e, n, i, e, space, end text, P, start subscript, n, end subscript, equals, rho, g, h, start text, space, d, o, space, w, z, o, r, u, space, n, a, space, c, i, s, with, \', on top, n, i, e, n, i, e, space, P, right parenthesis, end text
F, equals, left parenthesis, 1025, start fraction, start text, k, g, end text, divided by, m, cubed, end fraction, right parenthesis, left parenthesis, 9, comma, 8, start fraction, m, divided by, s, squared, end fraction, right parenthesis, left parenthesis, 63, comma, 0, start text, space, m, end text, right parenthesis, left parenthesis, pi, dot, open bracket, 0, comma, 056, start text, space, m, end text, close bracket, squared, right parenthesis, start text, left parenthesis, P, o, d, s, t, a, w, space, l, i, c, z, b, y, space, z, a, space, end text, rho, comma, g, comma, h, start text, space, o, r, a, z, end text, A, right parenthesis
F, equals, 6, space, 230, start text, space, N, end text, start text, space, left parenthesis, O, b, l, i, c, z, space, i, space, c, i, e, s, z, space, s, i, ę, !, right parenthesis, end text
Uwaga: W tym zadaniu użyliśmy nadciśnienia, ponieważ pytano nas o siłę spowodowaną przez "ciężar wody", a ciśnienie absolutne dotyczyłoby siły powodowanej przez ciężar wody oraz ciężar powietrza ponad wodą.